GLOBAL EDITION

Introductory and Intermediate Algebra

FIFTH EDITION

Marvin L. Bittinger • Judith A. Beecher • Barbara L. Johnson

Introductory and Intermediate Algebra

FIFTH EDITION
GLOBAL EDITION

MARVIN L. BITTINGER
Indiana University Purdue University Indianapolis
JUDITH A. BEECHER
BARBARA L. JOHNSON
Indiana University Purdue University Indianapolis

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director	Christine Hoag
Editor in Chief	Maureen O'Connor
Executive Editor	Cathy Cantin
Content Editor	Katherine Minton
Editorial Assistant	Chase Hammond
Senior Managing Editor	Karen Wernholm
Senior Production Supervisor	Ron Hampton
Head of Learning Asset Acquisitions, Global Edition	Laura Dent
Acquisition Editor, Global Edition	Murchana Borthakur
Project Editor, Global Edition	Anuprova Dey Chowdhuri
Composition	Lumina Datamatics Ltd.
Editorial and Production Services	Martha K. Morong/Quadrata, Inc.
Art Editor and Photo Researcher	The Davis Group, Inc.
Manager, Multimedia Production	Christine Stavrou
Associate Producer	Jonathan Wooding
Executive Content Manager	Rebecca Williams (MathXL)
Senior Content Developer	John Flanagan (TestGen)
Marketing Manager	Rachel Ross
Marketing Assistant	Kelly Cross
Senior Manufacturing Buyer	Debbie Rossi
Text Designer	The Davis Group, Inc.
Associate Design Director	Andrea Nix
Senior Designer	Barbara Atkinson
Cover Photograph	Rolf E. Staerk /Shutterstock
Cover Designer	Lumina Datamatics, Ltd.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England
and Associated Companies throughout the world
Visit us on the World Wide Web at:
www.pearsonglobaleditions.com
© Pearson Education Limited 2015
The rights of Marvin L. Bittinger, Judith A. Beecher, and Barbara L. Johnson to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Intermediate Algebra, ISBN 978-0-321-91789-8, by Marvin L. Bittinger, Judith A. Beecher, and Barbara L. Johnson, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-08000-0
ISBN 13: 978-1-292-08000-0
10987654321
1413121110
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
Typeset in 10 UtopiaStd-Regular by Lumina Datamatics, Ltd.
Printed in China (CTPS).
The publisher's policy is to use paper manufactured from sustainable forests.

Contents

Index of Applications 7
Preface 13
1 Introduction to Real Numbers and Algebraic Expressions 23
1.1 Introduction to Algebra 24
1.2 The Real Numbers 31
1.3 Addition of Real Numbers 42
1.4 Subtraction of Real Numbers 50
Mid-Chapter Review 57
1.5 Multiplication of Real Numbers 59
1.6 Division of Real Numbers 66
1.7 Properties of Real Numbers 75
1.8 Simplifying Expressions; Order of Operations 88
Summary and Review 97
Test 103
2 Solving Equations and Inequalities 105
2.1 Solving Equations: The Addition Principle 106
2.2 Solving Equations: The Multiplication Principle 112
2.3 Using the Principles Together 118
2.4 Formulas 129
Mid-Chapter Review 137
2.5 Applications of Percent 139
2.6 Applications and Problem Solving 147
Translating for Success 158
2.7 Solving Inequalities 164
2.8 Applications and Problem Solving with Inequalities 176
Summary and Review 184
Test 189
Cumulative Review 191
3 Graphs of Linear Equations193
3.1 Introduction to Graphing 194
3.2 Graphing Linear Equations 201
3.3 More with Graphing and Intercepts 212
Visualizing for Success 217
Mid-Chapter Review 223
3.4 Slope and Applications 225
Summary and Review 236
Test 242
Cumulative Review 245
4 Polynomials: Operations247
4.1 Integers as Exponents 248
4.2 Exponents and Scientific Notation 258
4.3 Introduction to Polynomials 270
4.4 Addition and Subtraction of Polynomials 283
Mid-Chapter Review 291
4.5 Multiplication of Polynomials 293
4.6 Special Products 300
Visualizing for Success 306
4.7 Operations with Polynomials in Several Variables 311
4.8 Division of Polynomials 320
Summary and Review 327
Test 333
Cumulative Review 335
5 Polynomials: Factoring337
5.1 Introduction to Factoring 338
5.2 Factoring Trinomials of the Type $x^{2}+b x+c$ 346
5.3 Factoring $a x^{2}+b x+c, a \neq 1$: The FOIL Method 356
5.4 Factoring $a x^{2}+b x+c, a \neq 1$: The ac-Method 364
Mid-Chapter Review 370
5.5 Factoring Trinomial Squares and Differences of Squares 372
5.6 Factoring Sums or Differences of Cubes 382
5.7 Factoring: A General Strategy 387
5.8 Solving Quadratic Equations by Factoring 395
5.9 Applications of Quadratic Equations 403
Translating for Success 409
Summary and Review 415
Test 421
Cumulative Review 423
6 Rational Expressions and Equations 425
6.1 Multiplying and Simplifying
Rational Expressions 426
6.2 Division and Reciprocals 436
6.3 Least Common Multiples and Denominators 441
6.4 Adding Rational Expressions 445
6.5 Subtracting Rational Expressions 453
Mid-Chapter Review 461
6.6 Complex Rational Expressions 463
6.7 Solving Rational Equations 469
6.8 Applications UsingRational Equations and Proportions 477
Translating for Success 484
6.9 Variation and Applications 491
Summary and Review 502
Test 509
Cumulative Review 511
7 Graphs, Functions, and Applications513
7.1 Functions and Graphs 514
7.2 Finding Domain and Range 528
Mid-Chapter Review 533
7.3 Linear Functions: Graphs and Slope 535
7.4 More on Graphing Linear Equations 546
Visualizing for Success 553
7.5 Finding Equations of Lines; Applications 558
Summary and Review 569
Test 578
Cumulative Review 581
8 Systems of Equations 583
8.1 Systems of Equations in Two Variables 584
8.2 Solving by Substitution 593
8.3 Solving by Elimination 599
8.4 Solving Applied Problems:
Two Equations 608
Translating for Success 616
8.5 Systems of Equations in Three Variables 623
8.6 Solving Applied Problems: Three Equations 630
Summary and Review 637
Test 643
Cumulative Review 645
9More on Inequalities647
9.1 Sets, Inequalities, and Interval Notation 648
Translating for Success 657
9.2 Intersections, Unions, and Compound Inequalities 664
Mid-Chapter Review 676
9.3 Absolute-Value Equations and Inequalities 678
9.4 Systems of Inequalities in Two Variables 689
Visualizing for Success 698
Summary and Review 703
Test 709
Cumulative Review 711
10 Radical Expressions, Equations, and Functions713
10.1 Radical Expressions and Functions 714
10.2 Rational Numbers as Exponents 725
10.3 Simplifying Radical Expressions 732
10.4 Addition, Subtraction, and More Multiplication 741
Mid-Chapter Review 747
10.5 More on Division of Radical Expressions 749
10.6 Solving Radical Equations 754
10.7 Applications Involving Powers and Roots 765
Translating for Success 767
10.8 The Complex Numbers 772
Summary and Review 783
Test 789
Cumulative Review 791
11Quadratic Equationsand Functions793
11.1 The Basics of Solving Quadratic Equations 794
11.2 The Quadratic Formula 808
11.3 Applications Involving Quadratic Equations 815
Translating for Success 821
11.4 More on Quadratic Equations 827
Mid-Chapter Review 836
11.5 Graphing $f(x)=a(x-h)^{2}+k$ 838
11.6 Graphing $f(x)=a x^{2}+b x+c$ 847
Visualizing for Success 852
11.7 Mathematical Modeling with Quadratic Functions 856
11.8 Polynomial Inequalities and Rational Inequalities 867
Summary and Review 875
Test 881
Cumulative Review 883
12 Exponential Functions and Logarithmic Functions 885
12.1 Exponential Functions 886
12.2 Composite Functions and Inverse Functions 900
12.3 Logarithmic Functions 917
12.4 Properties of Logarithmic Functions 928
Mid-Chapter Review 934
12.5 Natural Logarithmic Functions 936
Visualizing for Success 941
12.6 Solving Exponential Equations and Logarithmic Equations 945
12.7 Mathematical Modeling with Exponential Functions and Logarithmic Functions 952
Translating for Success 960
Summary and Review 966
Test 974
Cumulative Review 977
Appendixes 983
A Factoring and LCMs 984
B Fraction Notation 989
C Exponential Notation andOrder of Operations998
D Introductory Algebra Review 1003
E Mean, Median, and Mode 1005
F Synthetic Division 1008
G Determinants and Cramer's Rule 1011
H Elimination Using Matrices 1016
I The Algebra of Functions 1020
J Distance, Midpoints, and Circles 1023
Answers A-1
Guided Solutions A-47
Glossary G-1
Index I-1

Index of Applications

Agriculture

Composting, 864
Corral design, 863
Farmers' markets, 564-565
Feed lot, 822
Fenced-in land, 863
Filling a grain bin, 792
Flower bed, 822
Flower bulbs, 618
Free-range eggs, 511
Garden design, 864
Gardening, 486
Grain flow, 960
Grass seed, 488
Harvesting, 486, 792
Injuries on farms, 234
Livestock feed, 618
Mixing fertilizers, 612-613
Mulching flowerbeds, 510
Production of blueberries, 235
Sheep and lambs, 211
Vegetable seeds, 618

Astronomy

Distance from the sun to Earth, 263
Earth vs. Jupiter, 267
Earth vs. Saturn, 333
Radius of the earth, 369
Space travel, 268
Stars, 267
Surface temperature on a planet, 52,56
Weight of an astronaut, 501
Weight on Mars, 499

Automotive

Alternative fueling stations, 898
Auto dealers, 568
Automobile pricing, 634
Automotive maintenance, 619, 620
Automotive repair, 787
Car assembly line, 230
Daytime accidents, 865
Fuel economy, 620
Gas mileage, 481, 488
Hybrid vehicle models sold
in the United States, 886
Insurance-covered repairs, 182
Median age of cars, 578
Motor vehicle production, 142

Nighttime accidents, 865
Plug-in vehicle sales, 960
Price of a new car, 210
Speed of a skidding car, 763
Stopping distance of a car, 501, 864

Biology

Animal speeds, 485, 515
Bacteria growth, 899, 973, 1006
Bees and honey, 489, 493
Black bears, 188
Blue whales, 507, 961
Butterfly wings, 404
DNA, 264
Elephant measurements, 311
Fish population, 480, 488, 490
Flamingos in Africa, 260
Frog population, 488
Length of E. coli bacterium, 260
Mass of water in body, 499
Number of humpback whales, 490
Otter population, 962
Sharks' teeth, 419
Speed of a black racer snake, 487
Speed of sea animals, 477-478
Zebra population, 510

Business

Advertising revenue, 230-231
Artificial tree sales, 145
Book club, 980
Book sale, 634
Catering, 618
Chicken dinner sales, 644
Container sizes, 688
Copy machine rental, 190
Deli trays, 487
Delivering leaflets, 764
Delivery service, 662
Delivery truck rental,
151-152
eBook revenue, 144
Flower sales, 617
Food and drink sales, 980
Fruit quality, 481-482
Hardcover book revenue, 144
Home listing price, 160
Homespun Jellies, 577
Lens production, 636

Markup, 335
Maximizing profit, 864
Minimizing cost, 863
Newspaper advertiser spending, 146
Newspaper circulation, 543
Office budget, 484
Office expense, 616
Office supplies, 267
Online advertising, 210
Organic food sales, 567
Physical music sales, 964
Pizza proportions, 507
Quality control, 488, 507, 510, 582, 646
Radio advertising, 646
Renting office space, 662, 671
Retail and advertising, 973
Retail sales, 609, 641
Sales, 860
Sales meeting attendance, 409
Selling a condominium, 157
Selling a house, 156-157
Shipping, 498
Smoothie sales, 634
Super Bowl commercials, 631-632
Tea Mug Collective, 900
Telemarketing, 636
Ticket profits, 862
Total profit, 874
Volume of mail, 543
Warehouse storing nuts, 257

Chemistry

Ammonia solutions, 981
Carbon dating, 959, 963, 973, 976, 981
Chemical reaction, 62, 64, 70-71, 104
Chlorine in a pool, 482
Furniture polish, 618
Gold temperatures, 180
Half-life, 964
Hydrogen ion concentration, 953, 954, 961, 976
Ink remover, 618
Mixing solutions, 613, 622, 644, 646, 835
Nontoxic floor wax, 618
Orange drink mixtures, 641
Oxygen dissolved in water, 476
pH of liquids, 953, 954, 961
pH of tomatoes, 976
Temperature conversions, 524
Temperatures of liquids, 674
Temperatures of solids, 662
Zinc and copper in pennies, 489

Construction

Architecture, 413, 595-596, 863, 884
Beam weight, 500
Blueprints, 180
Board cutting, 159, 190
Box construction, 823
Burj Khalifa in Dubai, 806
Concrete work, 510
Constructing stairs, 234
Covered bridges, 964
Diagonal braces in a
lookout tower, 412
Fencing, 657
Flipping houses, 49
Footer of a house, 766
Gateway Arch, 806
Grade of a stairway, 545
Highway work, 507
Home construction, 964
Jackhammer noise, 961
Kitchen design, 239
Kitchen island, 403
Ladders, 407, 408, 468, 816, 817
Masonry, 230, 422
Molding plastics, 863
Observatory paint costs, 319
Painting, 764
Patio design, 863
Pipe cutting, 159
Pitch of a roof, 233, 544
Plank height, 767
Plumbing, 487, 770, 964
Rafters on a house, 483
Rain gutter design, 414
Roofing, 153-154, 414, 582, 771
Siduhe River Bridge in China, 806
Square footage, 511
Stained-glass window design, 857
Tokyo Sky Tree in Japan, 806
Two-by-four, 161
Washington Monument, 806
Wire cutting, 158, 192, 246, 409, 424,
821, 960
Wiring, 487
Wood scaffold, 407

Consumer

Aluminum usage, 499
Average price, 163
Babysitting costs, 30
Banquet costs, 180
Beef consumption, 74
Bottled water consumption, 189, 235
Catering costs, 176-177
Copy center account, 48
Copy machine rental, 190

Cost of an entertainment center, 187
Cost of a necklace, 563-564
Cost of a service call, 564
Cost of operating a
microwave oven, 129
Electrician visits, 183
First-class postage, 963
Fitness club costs, 567
Free ornamental tree offer, 607
Furnace repairs, 181
Gasoline prices, 821
Incorrect bill, 188
Insurance benefits, 662
Insurance claims, 662
Juice consumption, 65
Luxury purchases in China, 545
Milk consumption, 207
Moving costs, 707, 709
Parking costs, 161, 181, 183
Phone costs, 181
Pizza consumption, 331
Pizza prices, 866
Popcorn prices, 642
Price before sale, 188, 424
Price reduction, 30, 192
Prices, 161, 1007
Repair rates, 644
Store credit for a return, 188
Taxi fares, 162
Tipping, 145, 163
Utility cost, 646
Van rental, 161
Wedding costs, 662

Economics

Average tax refund, 545
Sales tax, 158, 409
Salvage value, 898, 962
Stimulating the hometown economy, 604
Stock loss, 66
Stock market changes, 103
Stock prices, 33, 49, 58, 65, 101, 162, 864
Supply and demand, 663, 865, 977
U.S. tax code, 963

Education

Bachelor's degrees, 545
Change in class size, 46
College course load, 181
College enrollment, 134, 542
College tuition, 181
Community college credits, 607
Enrollment costs, 28
Exam scores, 677
Grade average, 192
Grades, 661
International students, 146
Kindergarten in China, 234
Quiz scores, 326, 657
Reading assignment, 657
SAT scores, 616

Scholastic aptitude test, 633
School enrollment, 584
School fundraiser, 567
School photos, 487
Student debt, 542
Student loans, 144, 611, 616, 618, 619, 635
Test questions, 163
Test scores, 155, 163, 178, 180, 188, 440, 508, 1005
Tuition and fees at two-year colleges, 663
Tuition cost, 575
Valley Community College, 864, 865

Engineering

Beam load, 981
Bridge expansion, 769
Cell-phone tower, 409
Current and resistance, 499
Design, 413, 598
Distance over water, 770
Electrical power, 134
Electrical resistance, 497
Empire State Building, 39
Furnace output, 133
Guy wire, 413, 769, 821
Height of a tower, 763
Landscape design, 816-817, 856-857
Microprocessors, 266
Nuclear energy, 965
Ohm's Law, 492
Power of an electric current, 508
Pumping rate and time, 499, 508
Road design, 411, 412
Road grade, 229, 233, 241, 541
Rocket liftoff, 33
Solar capacity, 278
Solar power, 964
Suspension bridge, 861-862
Town planning, 816
TV signal, 497

Environment

Atlantic storms and hurricanes, 865, 1007
Coral reefs, 267
Dew point spread, 663
Distance from lightning, 129
Elevations, 55, 56, 104
Head of a river, 544
Low points on continents, 56
Melting snow, 492, 524
Niagara Falls water flow, 263
Ocean depth, 55
Pond depth, 183
Precipitation in Sonoma, California, 860
Record temperature drop, 211
Recycling, 899
River depth, 866
River discharge, 267
Slope of Longs Peak, 234
Slope of a river, 234

Tallest mountain, 48
Temperature, 32, 33, 39, 49, 52, 56, 58, 65
Tornadoes, 1007
Tree supports, 419
Waste generation, 712
Water contamination, 267
Water level, 32
Wind chill temperature, 771

Finance

Bank account balance, 49, 65, 101
Banking transactions, 46
Borrowing money, 424, 511, 767
Budgeting, 190
Charitable contributions, 960
Checking accounts, 56, 57
Compound interest, 319, 892, 893, 894, 897, 898, 935, 936, 954, 978
Credit cards, 49, 56, 162
Deposits and withdrawals, 39
Entertainment expenditures, 617
Interest compounded continuously, 955-956, 962, 973, 976
Investment, 192, 319, 611, 618, 619, 622, 630, 632, 635, 639, 644, 662, 677, 707, 894, 973
Loan interest, 162
Making change, 619
Money remaining, 30, 111
Savings account, 190
Savings interest, 162
Simple interest, 28, 156
Small business loans, 639
Total assets, 101

Geometry

Angle measures, 158, 636
Angles of a triangle, 153-154, 161, 162, 187, 257, 336, 355, 369, 409, 630, 631, 633, 642, 646, 767
Area of a circle, 249, 255, 336, 501
Area of a parallelogram, 29
Area of a rectangle, $25,182,257,326,336$
Area of a square, $28,255,511$
Area of a triangle, 28, 29, 117, 182, 769, 792
Bookcase width, 788
Complementary angles, 598, 606
Diagonal of a rectangle, 766, 769, 770
Diagonal of a square, 767
Dimensions of an open box, 414
Dimensions of a rectangular region, 161, 332, 403, 409, 410, 420, 422, 424, 484, 597, 598, 616, 622, 644, 646, 657, 821, 822, 823, 824, 879, 960
Dimensions of a sail, 404, 411
Distance between the parallel sides of an octagon, 771
Golden Rectangle, 826
Height of a parallelogram, 582

Lawn area, 286
Length of a side of a square, 419, 484, 769, 770, 788, 790
Length of a side of a triangle, 413, 414, 769, 771, 821, 823, 824
Lengths of a rectangle, 190, 767
Maximum area, 856-857, 881, 884, 981
Perimeter of a hexagon, 884
Perimeter of a rectangular region, 152-153, 158, 182, 190, 409, 468, 767
Perimeter of a triangle, 182
Perimeters of polygons, 981
Quilt dimensions, 823
Radius of a circle, 424
Right-triangle geometry, 408, 412
Room perimeter, 336
Supplementary angles, 598, 606, 616
Surface area, 826
Surface area of a cube, 133
Surface area of a right circular cylinder, 316
Surface area of a silo, 316
Triangle dimensions, 409, 411, 422, 424, 440, 582, 616, 740, 821, 822, 960
Volume of a box, 299, 334
Volume of carpeting, 386
Volume of a cube, 299
Volume of a tree, 497
Width of the margins in a book, 420
Width of a pool sidewalk, 414
Width of a rectangle, 158, 188, 409

Government

Average age of House members, 523
Average age of Senators, 523
Cost of health care in the United States, 976
Supreme Court Justices and appointing president, 515

Health/Medicine

Acidosis, 954
Alkalosis, 961
Audiology, 953
Blood types, 246
Body mass index, 661, 675
Body surface area, 721
Body temperatures, 180
Calories, 133, 315
Calories burned, 855
Cholesterol levels, 634, 664
Cost of diabetes, 567
Exercise, 620, 674
Fat content of fast food, 633
Fat intake, 498
Food science, 619
Health insurance cost, 244
Hemoglobin, 488
Impulses in nerve fibers, 480
Influenza virus, 268

Knee replacements, 898
Lung capacity, 315
Medical dosage, 272, 675, 855
Milk alternatives, 159
Muscle weight, 511
Nutrition, 177-178, 181, 634, 635
Organic food, 241
Patients with the flu, 326
People with Alzheimer's, 545
Pharmaceutical research, 484
Pharmacists, 527
Physical therapists, 655
Prescriptions, 662, 1005
Protein needs, 488
Reduced fat foods, 182, 183
Staphylococcus bacterium, 268
Veterinary expenditure, 634
Weight gain, 183
Weight loss, 65
Labor
Bonuses, 604
Commission, 187, 657
Earnings, 491, 764
Employment growth, 145
Employment outlook, 142
Median income, 142
Part-time job, 30
Salary, 30, 188, 192, 656, 657, 662, 1006
Work rate, 499
Work recycling, 480
Work time, 246
Working alone, 510, 826
Working together, 479-480, 486, 487, 494, 507, 510, 582, 767, 981

Miscellaneous

Apartment numbers, 160
Apparent size, 646
Apples, 163
Archaeology, 413, 597
Balloon bouquets, 617
Blending granola, 618
Blending spices, 609-610
Book pages, 326
Books in libraries, 211
Butter temperatures, 177
Cake servings, 866
Chocolate assortments, 617
City park space, 145
Cleaning bleachers, 494
Coffee, 488, 610, 634, 835, 954
Coin mixture, 163, 767, 821, 960
Converting dress sizes, 915
Cost of raising a child, 190
Cutting a submarine sandwich, 257
Digits, 636
Dishwasher noise, 961
Dog bites, 146
DVD collections, 657
Easter Island, 822
Elevators, 244

Envelope size, 181
Filling a tank, 712, 884
Filling time for a pool, 484
First class mail, 188, 194
Gold leaf, 268
Gourmet sandwiches, 150
Hands on a clock, 490
Hat size as a function of head circumference, 565
Height, 146
Height of a flagpole, 483
IRS instruction booklet, 520-521
Jewelry design, 630-631
Junk mail, 145
Knitted scarf, 149-150
Landscaping, 815, 821, 823
Left-handed people, 489
Limited-edition prints, 150-151
Locker numbers, 158, 821
Lunch orders, 608-609
Medals of Honor, 159
Memorizing words, 279
Mine rescue, 62
Mirror framing, 823
Most expensive furniture, 965
Mystery numbers, 616
Nontoxic scouring powder, 598
Package sizes, 181
Page numbers, 336, 406, 412
Photo size, 161
Picture matting and framing, 824, 879
Pieces of mail, 74
Pizza crusts, 826
Post office box numbers, 160
Pulitzer Prize, 522
Raffle tickets, 160, 190, 636, 823
Raking, 486
Reducing a drawing on a copier, 192
Shoveling snow, 486, 767
Sighting to the horizon, 762, 763, 790
Snow removal, 241, 486
Socks from cotton, 130
Sodding a yard, 479-480
Sound of an alarm clock, 961
Speaker placement, 770
Stacking spheres, 278
Sunday newspapers, 231
Tattoos, 145
Uniform numbers, 960
Value of a lawn mower, 567
Value of a rare stamp, 935
Warning dye, 792
Water flow, 500
Wireless internet sign, 28
Yield sign, 28

Physics

Acoustics, 953
Altitude of a launched object, 315
Atmospheric drag, 501
Centripetal force, 981
Combined gas law, 501
Falling distance, 497, 819-820

Free-falling objects, 806, 881
Height of a rocket, 413
Height of a thrown object, 874
Hooke's Law, 499
Intensity of light, 501
Law of gravity, 495
Motion of a spring, 688
Musical pitch, 494, 500
Pendulums, 740, 764, 818-819
Pressure at sea depth, 524, 674, 709
Sound levels, 952-953, 961, 972
Speed of light, 487
Speed of sound, 760
Temperature and the speed of sound, 763
Temperature as a function of depth, 524
Volume and pressure, 499
Wavelength of a musical note, 133
Wavelength of red light, 266
Weight of a sphere, 500

Social Science

Adoptions from Russia, 146
Age, 160, 188, 636
Donated Girl Scout cookies, 141
Foreign adoptions to the United States, 865, 882
Fraternity or sorority membership, 158
Handshakes, 411-412
Homelessness, 962
Living with grandparents, 526
Ramps for the disabled, 770
Siblings, 620
Social networking, 864
Spread of a rumor, 962
Volunteer work, 183

Sports/Entertainment

500 Festival Mini-Marathon, 160
Art masterpieces, 965
Baseball diamond, 766
Basketball scoring, 606, 635
Batting average, 480
Beach volleyball, 815
Bicycling, 484, 824, 825
Boston Marathon, 145
Bungee jumping, 826
Busiest orchestras, 211
Concert series at the Capitol, 760
Cross-country skiing, 486
Cycling in Vietnam, 147-148
Diver's position, 65
Dubai ski run, 229
Earned run average, 501
Fastest roller coasters, 154-155
Football yardage, 33, 49, 101
Games in a sports league, 271, 405, 411
Golf, 635, 883
Gondola aerial lift, 241
Grade of a treadmill, 229, 542, 544
Hang time, 802-803, 805, 819, 874, 881
High school basketball court, 153

Hockey, 598, 712
Kingda Ka roller coaster, 806
Lacrosse field, 152-153
Little League baseball, 146
Major League baseball attendance, 355
Marathon times, 806
Marching band performance, 760
Media usage, 263-264
Movie theatre tickets, 190
New magazines, 146
Olympics, 266
Race numbers, 405-406
Rollerblade costs, 192
Run differential, 56
Running, 148, 444, 545, 616
SCAD diving, 278
Size of a league schedule, 133
Skiing, 183, 824
Skydiving, 277
Soccer field, 597
Softball diamond, 769
Super Bowl spending, 74
Tennis court, 644
Ticket revenue, 642
Ticket sales, 864
Vertical leap, 803
Walking, 486, 488, 961
World running records, 180, 568, 577
Zipline, 419

Statistics/Demographics

Areas of Texas and Alaska, 142
Average number of motorcyclists
killed, 860
Billionaires, 957-958
Dimensions of Wyoming, 187
Haitian population ages $0-36,141$
Heaviest pumpkin, 557
Island population, 158
Life expectancy in Monaco, 568
Life expectancy in South Africa, 568
Life expectancy for women, 860
Live births by age, 880
Median age of men at
first marriage, 580
Population, 859, 860
Population decrease, 65, 104, 235, 238, 657, 964
Population density, 24-25
Population growth, 235, 238, 955, 963, 976, 982
Population of the United States, 266
Senior population, 190, 278
State populations, 238
World population, 144, 205-206, 963

Technology

Calculator design, 410
Computer pricing, 634
Computer repair, 577
Computer screen size, 765
Computer technology, 268
Digital photo frame, 582

DVD player screen, 879
Global mobile data traffic, 958
Information technology, 268
LCD TVs, 898
Manufacturing computers, 1005
Memory board, 881
Office copiers, 487, 510
Office printers, 487
Relative aperture, 498
Value of a computer, 545, 567

Transportation

Air travel, 615, 620, 641, 644, 824, 981
Airplane seating, 598
Airplane speed, 507
Airport control tower, 160
Auto travel, 614
Bicycle speed, 485
Bicycle travel, 764
Boat speed, 486

Boat travel, 767
Boating, 619, 622, 807
Bus travel, 493
Canoe depth, 866
Canoeing, 619, 824
Car speed, 485, 486, 490, 825, 837
Car travel, 511, 619, 821, 960
Car trips, 824
Chartering a bus, 973
Commuting, 26, 28, 771
Distance traveled, 28, 30, 111, 117, 133, 579
Driving speed, 478, 485, 510
Grade of transit system, 234
Height of an airplane, 763
Interstate mile markers, 151, 187
Luggage size, 702
Marine travel, 615, 771, 818, 821, 881, 884
Minimizing tolls, 674

Mishandled baggage, 489
Motorcycle travel, 652, 817-818, 879
Navigation, 243, 825
Parking lots, 721, 822, 833
Passports, 74
Point of no return, 620
Public transit systems, 160
Rate of travel, 499
Road-pavement messages, 766, 768
Sailing, 822, 823
Shipwreck, 39
Sightseeing boat, 616
Submarine, 33
Tractor speed, 486
Train speed, 485, 507, 767
Train travel, 244, 510, 614, 619, 641, 960, 981
Trucking speed, 486
U.S. transcontinental railroad, 633

CREDITS

24, 2010 U.S. Census from the U.S. Census Bureau 26, Veniamin Kraskov/Shutterstock 28, Carlos Santa Maria/Fotolia 32, Ed Metz/Shutterstock 39, Dave King © Dorling Kindersley 46, Comstock, Getty Images 52, Mellowbox/Fotolia 62, Ivan Alvarado/Reuters 65, David Peart/DK Images 101, Brian Snyder/Reuters 129, Leonid Tit/Fotolia 130, London Photos/Alamy 133, SoCalBatGal/Fotolia 134 (left), Sky Bonillo/PhotoEdit 134 (right), Anthony Berenyi/Shutterstock 141, Jennifer Pritchard/MCT KRT/Newscom 142, gjeerawut/Fotolia 145 (left), iofoto/Shutterstock 145 (right), Stew Milne/Associated Press 146 (left), Wilson Araujo/Shutterstock 146 (right), michaeljung/Shutterstock 155, Magic Mountain/Associated Press 156, Stephen VanHorn/Shutterstock 159 (left), Rodney Todt/Alamy 159 (right), Corbis/ SuperStock 160 (left), courtesy of Indianapolis Motor Speedway 160 (right), Lars Lindblad/Shutterstock 161 (left), Barbara Johnson 161 (right), Studio 8. Pearson Education Ltd. 162, Elena Yakusheva/Shutterstock 177 (photo), Kike Calvo VWPics/SuperStock 177 (figure), Nutrition Graphic from the U.S. Department of Agriculture 180, Andrey N. Bannov/ Shutterstock 183 (left), Reggie Lavoie/Shutterstock 183 (right), Monkey Business/Fotolia 187, pearlguy/Fotolia 188, outdoorsman/Fotolia 205, denis_pc/Fotolia 209, David Pearson/Alamy 234 (left), Alex Robinson © Dorling Kindersley 234 (right), Evan Meyer/Shutterstock 235 (left), Maria Dryfhout/Shutterstock 235 (right), onizu3d/Fotolia 241, arinahabich/ Fotolia 246, Wei Ming/Shutterstock 249, NASA 260 (left), Anna Omelchenko/Fotolia 260 (right), Nathan Devery/Science Source 263, Lorraine Swanson/Fotolia 264, OJO Images Ltd/Alamy 266 (left), Terry Leung/Pearson Education Asia Ltd 266 (right), Lana Rastro/Alamy 267, Engine Images/Fotolia 268 (left), SeanPavonePhoto/Fotolia 268 (right), Science Source 277, Brian Buckland 278, Joern Sackerman/Alamy 311, Linda Whitwam/Dorling Kindersley 315, Coneyl Jay/Science Source 369, NASA 405, Hans Neleman/Corbis/Glow Images 411, Stephen Barnes/Hobbies and Crafts/Alamy 419, Pattie Steib/ Shutterstock 424, pedrosala/Shutterstock 444, Igor Normann/Shutterstock 479, Brocreative/Shutterstock 482, Ortodox/Shutterstock 487 (left), Elenathewise/Fotolia 487 (right), simon johnsen/Shutterstock 488, Handmade Pictures/ Shutterstock 489 (left), lightpoet/Shutterstock 489 (right), Drazen/Shutterstock 490, Catmando/Shutterstock 493, Rob Reichenfeld/Dorling Kindersley 494, Everett Collection Inc/Alamy 498 (left), 498 (right), s_oleg/Shutterstock 499, Sozaijiten/PAL 500, Babirad/SIPA/Newscom 501, Aleph Studio/Shutterstock 507 (left), Dmitry Kalinovsky/Shutterstock 507 (right), James McConnachie © Rough Guides/Pearson Asset Library 511, Clive Chilvers/Shutterstock 515, OwenDB/Black Star/Newscom 520, tab62/Shutterstock 523 (left), Richard A. McMillin/Shutterstock 523 (right), Jeff Malet Photography/Newscom 524, michalzak/Fotolia 557, courtesy of Ron Wallace 563, Mark Soon/Shutterstock 564, Baloncici/ Shutterstock 582, TFoxFoto/Shutterstock 584, Monkey Business/Fotolia 597, Stephan Scherhag/Shutterstock 604, John David Mercer/Mobile Press-Register 607 (left), Michael Dwyer/Alamy 607 (right), V. J. Matthew/Shutterstock 608, dbimages/Alamy 609, Vladimir Wrangel/Shutterstock 617 (left), Alistair Laming/Alamy 617 (right), laperia_777/ Fotolia 631, Jeff Haynes/Reuters 633 (left), Corbis/SuperStock 633 (right), ZUMA Press, Inc./Alamy 634 (left), Samuel Borges Photography/Shutterstock 634 (right), Butsenko Anton Itar-Tass Photos/Newscom 635 (left), Beat Bieler/ Shutterstock 635 (right), ZUMA Press, Inc./Alamy 655, gwimages/Fotolia 656, Johnny Habell/Shutterstock 662, Bob Orsillo/Shutterstock 663, JJStudio/Shutterstock 664, John Kwan/Shutterstock 671, Monkey Business/Shutterstock 674, Andrey N. Bannov/Shutterstock 712 (top), Gruffydd Thomas/Alamy 712 (bottom), modestil/Fotolia 721, SeanPavonePhoto/Shutterstock 760, Chuck Pefley/Alamy 763 (top), jivan child/Fotolia 763 (left bottom), Everett Collection, Inc./Alamy 763 (right bottom), Ingram Publishing/Thinkstock 769 (left), Mo Peerbacus/Alamy 769 (right), Lasse Kristensen/Fotolia 792, Kletr/Shutterstock 803, ZUMA Press, Inc./Alamy 806 (left), Associated Press 806 (right), Shining Photography/ Shutterstock 819, ZUMA Press, Inc./Alamy 822, Bill Bachman/Alamy 823, Kheng Guan Toh/Fotolia 824 (left), Rob Kints/ Shutterstock 824 (right), Stefan Schurr/Shutterstock 861, Bob Cheung/Fotolia 864, Teen and Parent Surveys, PEW Research Center and American Life Project, 2006865 (left), Intercountry Adoption, Office of Children's Issues, U.S. Department of State, 2012865 (right), National Oceanic and Atmospheric Administration Hurricane Research Division, 2012 882, Intercountry Adoption, Office of Children's Issues, U.S. Department of State, 2012898 (left), Grandpa/Shutterstock 898 (right), BSIP SA/Alamy 899 (left), Jenny Thompson/Fotolia 899 (right), Deco Images 900, Alex Van Wyhe and Shane Kimberlin of Tea Mug Collective 952, Aaron Amat/Shutterstock 955, Brianindia/Alamy 958, Philippe Devanne/Fotolia 959, Tasha Treadwell/The Baltimore Sun 961 (left), Mark Conlin/Alamy 961 (right), Fotolia RAW/Fotolia 962 (left), Nicky Rhodes/ Shutterstock 962 (right), gpointstudio/Fotolia 963, tab62/Fotolia 964 (left), PSL Images/Alamy 964 (right), pmstephens/ Fotolia 965 (left), Hackenberg-Photo-Cologne/Alamy 965 (right), Jon Nazca/Reuters Pictures 972, Ferenc Szelepcseny/ Alamy 973, Artur Marciniec/Fotolia 977, ponsulak/Fotolia 1005, Khuong Hoang/Getty Images 1007 (left), Aspen Rock/ Shutterstock 1007 (right), fStop/Alamy

Preface

The Bittinger Program

Math hasn't changed, but students-and the way they learn it-have.
Introductory and Intermediate Algebra, Fifth Edition, continues the Bittinger tradition of objective-based, guided learning, while integrating timely updates to the proven pedagogy. In this edition, there is a greater emphasis on guided learning and helping students get the most out of all of the course resources available with the Bittinger program, including new opportunities for mobile learning.

The program has expanded to include these comprehensive new teaching and learning resources: MyMathGuide workbook, To-the-Point Objective Videos, and enhanced, media-rich MyMathLab courses. Feedback from instructors and students motivated these and several other significant improvements: a new design to support guided learning, new figures and photos to help students visualize both concepts and applications, and many new and updated real-data applications to bring the math to life.

With so many resources available in so many formats, the trusted guidance of the Bittinger team on what to do and when will help today's math students stay on task. Students are encouraged to use Your Guide to Success in Math, a four-step learning path and checklist available on the handy reference card in the front of this text and in MyMathLab. The guide will help students identify the resources in the textbook, supplements, and MyMathLab that support their learning style, as they develop and retain the skills and conceptual understanding they need to succeed in this and future courses.

In this preface, a look at the key new and hallmark resources and features of the Introductory and Intermediate Algebra program—including the textbook/eText, video program, MyMathGuide workbook, and MyMathLab-is organized around Your Guide to Success in Math. This will help instructors direct students to the tools and resources that will help them most in a traditional lecture, hybrid, lab-based, or online environment.

NEW AND HALLMARK FEATURES IN RELATION TO Your Guide to Success in Math

STEP 1 Learn the Skills and Concepts

Students have several options for learning, reviewing, and practicing the math concepts and skills.

Textbook/eText

\square Skill to Review. At the beginning of nearly every text section, Skill to Review offers a just-in-time review of a previously presented skill that relates to the new material in the section. Section and objective references are included for the student's convenience, and two practice exercises are provided for review and reinforcement.
\square Margin Exercises. For each objective, problems labeled "Do Exercise . . ." give students frequent opportunities to solve exercises while they learn.
\square New! Guided Solutions. Nearly every section has Guided Solution margin exercises with fill-in blanks at key steps in the problem-solving process.
\square Enhanced! MyMathLab. MyMathLab now includes Active Learning Figures for directed exploration of concepts; more problem types, including Reading Checks and Guided Solutions; and new, objective-based videos. (See pp. 16-19 for a detailed description of the features of MyMathLab.)
\square New! Skills Checks. In the Learning Path for Ready-to-Go MyMathLab, each chapter begins with a brief assessment of students' mastery of the prerequisite skills needed to learn the new material in the chapter. Based on the results of this pre-test, a personalized homework set is designed to help each student prepare for the chapter.
\square New! To-the-Point Objective Videos. This is a comprehensive new program of objective-based, interactive videos that are incorporated into the Learning Path in MyMathLab and can be used hand-in-hand with the MyMathGuide workbook.
\square New! Interactive Your Turn Exercises. For each objective in the videos, students solve exercises and receive instant feedback on their work.
\square New! MyMathGuide: Notes, Practice, and Video Path. This is an objectivebased workbook (available printed and in MyMathLab) for guided, hands-on learning. It offers vocabulary, skill, and concept review-along with problemsolving practice-with space to show work and write notes. Incorporated in the Learning Path in MyMathLab, it can be used together with the To-the-Point Objective Video program, instructor lectures, and the textbook.

STEP 2 Check Your Understanding

Throughout the program, students have frequent opportunities to check their work and confirm that they understand each skill and concept before moving on to the next topic.
\square New! Reading Checks. At the beginning of each set of section exercises in the text, students demonstrate their grasp of the skills and concepts.
\square New! Active Learning Figures. In MyMathLab, Active Learning Figures guide students in exploring math concepts and reinforcing their understanding.
\square Translating/Visualizing for Success. In the text and in MyMathLab, these activities offer students extra practice with the important first step of the process for solving applied problems.

STEP 3 Do Your Homework

Introductory and Intermediate Algebra, Fifth Edition, has a wealth of proven and updated exercises. Prebuilt assignments are available for instructors in MyMathLab, and they are preassigned and incorporated into the Learning Path in the Ready-toGo course.
\square Skill Maintenance. In each section, these exercises offer a thorough review of the math in the preceding text.
\square Synthesis Exercises. To help build critical-thinking skills, these section exercises require students to use what they know and combine learning objectives from the current section with those from previous sections.

Students have a variety of resources to check their skills and understanding along the way and to help them prepare for tests.Mid-Chapter Review. Mid-way through each chapter, students work a set of exercises (Concept Reinforcement, Guided Solutions, Mixed Review, and Understanding Through Discussion and Writing) to confirm that they have grasped the skills and concepts covered in the first half before moving on to new material.
\square Summary and Review. This resource provides an in-text opportunity for active learning and review for each chapter. Vocabulary Reinforcement, Concept Reinforcement, objective-based Study Guide (examples paired with similar exercises), Review Exercises (including Synthesis problems), and Understanding Through Discussion and Writing are included in these comprehensive chapter reviews.
\square Chapter Test. Chapter Tests offer students the opportunity for comprehensive review and reinforcement prior to taking their instructor's exam. Chapter TestPrep Videos (in MyMathLab and on YouTube) show step-by-step solutions to the Chapter Tests.
\square Cumulative Review. Following every chapter beginning with Chapter 2, a Cumulative Review revisits skills and concepts from all preceding chapters to help students retain previously learned material.

Study Skills

Developing solid time-management, note-taking, test-taking, and other study skills is key to student success in math courses (as well as professionally and personally). Instructors can direct students to related study skills resources as needed.
\square New! Student Study Reference. This pull-out card at the front of the text is perforated, three-hole-punched, and binder-ready for convenient reference. It includes Your Guide to Success in Math course checklist, Student Organizer, and At a Glance, a list of key information and expressions for quick reference as students work exercises and review for tests.
\square New! Studying for Success. Checklists of study skills-designed to ensure that students develop the skills they need to succeed in math, school, and life-are integrated throughout the text at the beginning of selected sections.
\square New! Study Skills Modules. In MyMathLab, interactive modules address common areas of weakness, including time-management, test-taking, and notetaking skills. Additional modules support career-readiness.

Learning Math in Context

New! Applications. Throughout the text in examples and exercises, real-data applications encourage students to see and interpret the mathematics that appears every day in the world around them. Applications that use real data are drawn from business and economics, life and physical sciences, medicine, technology, and areas of general interest such as sports and daily life. New applications include "Cycling in Vietnam" (p. 147), "Speed of Sea Animals" (p. 477), "Employment Demand for Physical Therapists" (p. 655), "Beach Volleyball" (p. 815), and "Alternative Fueling Stations" (p. 898). For a complete list of applications, please refer to the Index of Applications (p. 7).

BREAK THROUGH
 To improving results

MyMathLab

Ties the Complete Learning Program Together

MyMathLab ${ }^{\otimes}$ Online Course (access code required)

MyMathLab from Pearson is the world's leading online resource in mathematics, integrating interactive homework, assessment, and media in a flexible, easy to use format. MyMathLab delivers proven results in helping individual students succeed. It provides engaging experiences that personalize, stimulate, and measure learning for each student. And it comes from an experienced partner with educational expertise and an eye on the future.

MyMathLab for Developmental Mathematics

Prepared to go wherever you want to take your students.

Personalized Support for Students

Exercises: The homework and practice exercises in MyMathLab are correlated to the exercises in the textbook, and they regenerate algorithmically to give students unlimited opportunities for practice and mastery. The software offers immediate, helpful feedback when students enter incorrect answers.

Multimedia Learning Aids: Exercises include guided solutions, sample problems, animations, videos, and eText access for extra help at point-of-use.
Expert Tutoring: Although many students describe the whole of MyMathLab as "like having your own personal tutor," students using MyMathLab do have access to live tutoring from qualified math instructors.

To help students achieve mastery, MyMathLab can generate personalized homework based on individual performance on tests or quizzes. Personalized homework allows students to focus on topics they have not yet mastered. Personalized Homework

The Adaptive Study Plan makes studying more efficient and effective for every student. Performance and activity are assessed continually in real time. The data and analytics are used to provide personalized content-reinforcing concepts that target each student's strengths and weaknesses.

Flexible Design, Easy Start-Up, and Results for Instructors

Instructors can modify the site navigation and insert their own directions on course-level landing pages; also, a custom MyMathLab course can be built that reorganizes and structures the course material by chapters, modules, unitswhatever the need may be.
Ready-to-Go courses include preassigned homework, quizzes, and tests to make it even easier to get started. The Bittinger Ready-to-Go courses include new Mid-Chapter Reviews and Reading Check Assignments, plus a four-step Learning Path on each section-level landing page to help instructors direct students where to go and what resources to use.

The comprehensive online gradebook automatically tracks students' results on tests, quizzes, and homework and in the study plan. Instructors can use the gradebook to quickly intervene if students have trouble, or to provide positive feedback on a job well done. The data within MyMathLab are easily exported to a variety of spreadsheet programs, such as Microsoft Excel. ${ }^{\circledR}$ Instructors can determine which points of data to export and then analyze the results to determine success.
New features, such as Search/Email by criteria, make the
 gradebook a powerful tool for instructors. With this feature, instructors can easily communicate with both at-risk and successful students. They can search by score on specific assignments, noncompletion of assignments within a given time frame, last login date, or overall score.

Special Bittinger Resources

in MyMathLab for Students and Instructors

In addition to robust course delivery, MyMathLab offers the full Bittinger eText, additional Bittinger Program features, and the entire set of instructor and student resources in one easy-to-access online location.

New! Active Learning Figures

In MyMathLab, Active Learning Figures guide students in exploring math concepts and reinforcing their understanding. Instructors can use Active Learning Figures in class or as media assignments in MyMathLab.

New! Four-Step Learning Path

Each of the section-level landing pages in the Ready-to-Go MyMathLab course includes a Learning Path that aligns with Your Guide to Success in Math to link students directly to the resources they should use when they need them. This also allows instructors to point students to the best resources to use at particular times.

New! Integrated Bittinger Video Program and MyMathGuide workbook
 Bittinger Video Program

The Video Program is available in MyMathLab and includes closed captioning and the following video types:

New! To-the-Point Objective Videos. These objective-based, interactive videos are incorporated into the Learning Path in MyMathLab and can be used along with the MyMathGuide workbook.
Chapter Test Prep Videos. The Chapter Test Prep Videos let students watch instructors work through step-by-step solutions to all the Chapter Test exercises from the textbook. Chapter Test Prep Videos are also available on YouTube (search using author name and book title).
YOUR TURN 1
Ellie recently bought a used Ferrari F355. She must change the oil in the car every 5000 miles at a cost of $\$ 1100$ per oil change. What is the cost of oil changes in dollars per mile?
a) $\$ 0.22$ per mile
b) $\$ 4.55$ per mile
c) $\$ 0.45$ per mile

New! MyMathGuide: Notes, Practice, and Video Path workbook

This objective-based workbook for guided, hands-on learning offers vocabulary, skill, and concept review-along with problem-solving practice-with space to show work and write notes. Incorporated in the Learning Path in MyMathLab, MyMathGuide can be used together with the To-the-Point Objective Video program, instructor lectures, and the textbook. Instructors can assign To-the-Point Objective Videos in MyMathLab in conjunction with the MyMathGuide workbook.

Equations and Solutions

ESSENTIALS

An equation is a number sentence that says that the expressions on either side of the equals sign, $=$, represent the same number.
Any replacement for the variable that makes an equation true is called a solution of the equation. To solve an equation means to find all of its solutions.

Examples

- $2+5=7$ The equation is true.
- $9-3=3$ The equation is false.
- $x-8=11$ The equation is neither true nor false, because we do not know what number x represents.

GUIDED LEARNING	YOUR TURN 1
EXAMPLE 1	Determine whether the equation is true, false, or neither. $5-9=-4$
Determine whether the equation is true, false, or neither. $4-6=2$	Yideo The equation is false.
EXAMPLE 2	Determine whether the equation is true, false, or neither. Eetermine whether the equation is true, false, or neither. $13+7=5+15$
The equation is true.	YOUR TURN 3 EXAMPLE 3
Determine whether the equation is true, false, or neither. $x+5=14$	Determine whether the equation is true, false, or neither. The equation is neither true nor false, because we do not know what number x represents.

Study Skills Modules

In MyMathLab, interactive modules address common areas of weakness, including time-management, test-taking, and notetaking skills. Additional modules support career-readiness. Instructors can assign module material with a post-quiz.

Additional Resources in MyMathLab

For Students

Student's Solutions Manual

By Judy Penna
Contains completely worked-out annotated solutions for all the odd-numbered exercises in the text. Also includes fully worked-out annotated solutions for all the exercises (odd- and even-numbered) in the Mid-Chapter Reviews, the Summary and Reviews, the Chapter Tests, and the Cumulative Reviews.

For Instructors

Instructor's Resource Manual with Tests and Mini Lectures**
(download only)
By Laurie Hurley
This manual includes resources designed to help both new and experienced instructors with course preparation and classroom management. This includes chapter-by-chapter teaching tips and support for media supplements. Contains two multiple-choice tests per chapter, six free-response tests per chapter, and eight final exams.

Instructor's Solutions Manual ${ }^{* *}$
 (download only)
 By Judy Henn

This manual contains detailed, worked-out solutions to all odd-numbered exercises and brief solutions to the evennumbered exercises in the exercise sets.

PowerPoint ${ }^{\circledR}$ Lecture Slides ${ }^{* *}$ (download only)
Present key concepts and definitions from the text.

To learn more about how MyMathLab combines proven learning applications with powerful assessment, visit http://www.mymathlabglobal.com or contact your Pearson representative.

[^0]
Acknowledgments

Our deepest appreciation to all of you who helped to shape this edition by reviewing and spending time with us on your campuses. In particular, we would like to thank the following reviewers:

Nneka Anigbogu, Malcolm X College
Afsheen Akbar, Bergen Community College
Michael Bagley, Feather River College
Susan Bornsen, North Dakota State University
Erin Cooke, Gwinnett Technical College
Kay Davis, Del Mar College
Beverlee Drucker, Northern Virginia Community College
Sabine Eggleston, Edison State College
Dylan Faullin, Dodge City Community College
Cornell Grant, Georgia Piedmont Technical College
Rebecca Gubitti, Edison State College
Exie Hall, Del Mar College
Stephanie Houdek, St. Cloud Technical Institute

Linda Kass, Bergen Community College Donna Marple, Ivy Tech Community College Dorothy Marshall, Edison State College Kimberley McHale, Heartland Community College Arda Melkonian, Victor Valley College Christian Miller, Glendale Community College Joan Monaghan, County College of Morris Thomas Pulver, Waubonsee Community College Jane Serbousek, Northern Virginia Community College Mary Pat Sheppard, Malcolm X College Melanie Walker, Bergen Community College
Limin Zhang, Columbia Basin College

The endless hours of hard work by Martha Morong and Geri Davis have led to products of which we are immensely proud. We also want to thank Judy Penna for writing the Student's and Instructor's Solutions Manuals. Other strong support has come from Laurie Hurley for the Instructor's Resource Manual and for accuracy checking, along with checkers Judy Penna, Joanna Eichenwald, and Perian Herring, and from proofreader Daniel Johnson. Michelle Lanosga assisted with applications research. We also wish to recognize Nelson Carter, Tom Atwater, Judy Penna, and Laurie Hurley who prepared the videos.

In addition, a number of people at Pearson have contributed in special ways to the development and production of this textbook, including the Developmental Math team: Senior Production Supervisor Ron Hampton, Senior Designer Barbara Atkinson, Content Editor Katherine Minton, Editorial Assistant Chase Hammond, and Associate Media Producer Jonathan Wooding. Executive Editor Cathy Cantin and Marketing Manager Rachel Ross encouraged our vision and provided marketing insight.

The publishers would like to thank the following for their contributions to the Global Edition:

Contributor

Pranab Sarma, Assam Engineering College

Reviewers

Mani Sankar, East Point College of Engineering and Technology C.V. Vinay, JSS Academy of Technical Education

Vini Chharia

At a Glance: Introductory and Intermediate Algebra

Operations with Real Numbers

$-18+3=-15$
$-6+(-4)=-10$
$9-12=-3$
$-7-(-10)=3$
Absolute value: $|-4|=4$
The opposite of $-\frac{3}{7}$ is $\frac{3}{7}$.
The reciprocal of $-\frac{2}{9}$ is $-\frac{9}{2}$.

Order of Operations

1. Do all calculations within grouping symbols before operations outside.
2. Evaluate all exponential expressions.
3. Do all multiplications and divisions in order from left to right.
4. Do all additions and subtractions in order from left to right.

Exponents

$$
\begin{aligned}
& x^{0}=1 ; \quad x^{1}=x ; \quad x^{-3}=\frac{1}{x^{3}} ; \\
& x^{2} \cdot x^{5}=x^{7} ; \quad \frac{x^{5}}{x^{2}}=x^{3} ; \quad\left(x^{2}\right)^{5}=x^{10}
\end{aligned}
$$

Polynomials

Multiplying:

$$
\begin{aligned}
& (y-4)(3 y+5)=3 y^{2}-7 y-20 \\
& (q-5)(q+5)=q^{2}-25 \\
& (2 a-3)^{2}=4 a^{2}-12 a+9
\end{aligned}
$$

Factoring:

$2 x^{2}-5 x-12=(2 x+3)(x-4)$
$25 x^{2}-4=(5 x-2)(5 x+2)$
$9 x^{2}+6 x+1=(3 x+1)^{2}$
$x^{3}+64=(x+4)\left(x^{2}-4 x+16\right)$
$x^{3}-1000=(x-10)\left(x^{2}+10 x+100\right)$

Set-Builder Notation and Interval Notation

$\{x \mid x$ is a real number $\}=(-\infty, \infty)$
$\{x \mid x<3\}=(-\infty, 3)$
$\{x \mid-3 \leq x<3\}=[-3,3)$
$\{x \mid x \geq 3\}=[3, \infty)$

Linear Function and Slope

$A x+B y=C: 2 x-3 y=6 ;$
$y=m x+b: y=\frac{2}{3} x-2$;
$f(x)=m x+b: f(x)=\frac{2}{3} x-2$
Slope $(m)=\frac{2}{3}$
y-intercept $(0, b)=(0,-2)$

Slope of line through $(-6,2)$ and $(4,-9)$:
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-9-2}{4-(-6)}=\frac{-11}{10}=-\frac{11}{10}$
The slope of a horizontal line is 0 .
The slope of a vertical line is not defined.

Quadratic Functions

$f(x)=a x^{2}+b x+c$
$f(x)=x^{2}-x-6$

$$
=(x+2)(x-3)
$$

Function values:
$f(0)=-6, f(1)=-6$,

$f(-2)=0, f(3)=0$,
$f(-1)=-4, f(2)=-4$
x-intercepts: $(-2,0)$ and $(3,0)$
Vertex: $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)=\left(\frac{1}{2},-6 \frac{1}{4}\right)$
Axis of symmetry: $x=\frac{1}{2}$
Domain: $(-\infty, \infty)$
Range: $\left[-6 \frac{1}{4}, \infty\right)$

Parallel Lines and Perpendicular Lines

Two lines are parallel if they have the same slope and different y-intercepts;
$y=2 x-3$ and $y=2 x+4$ are parallel.
Two nonvertical lines are perpendicular if the product of their slopes is -1 : $m_{1} \cdot m_{2}=-1$;
$y=\frac{1}{2} x+3$ and $y=-2 x-7$ are perpendicular.

Pythagorean Theorem

Solving Equations

Using the Principle of Zero Products

$$
\begin{aligned}
x^{2}+3 x & =54 \\
x^{2}+3 x-54 & =0 \\
(x+9)(x-6) & =0 \\
x+9=0 & \text { or } \quad x-6=0 \\
x=-9 & \text { or } \quad x=6
\end{aligned}
$$

The solutions are -9 and 6 .

Using the Quadratic Formula

Quadratic Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& x^{2}-6 x+2=0 ; a=1, b=-6, c=2 \\
& x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4 \cdot 1 \cdot 2}}{2 \cdot 1}=\frac{6 \pm \sqrt{28}}{2} \\
& \quad=\frac{6 \pm 2 \sqrt{7}}{2}=3 \pm \sqrt{7}
\end{aligned}
$$

The solutions are $3+\sqrt{7}$ and $3-\sqrt{7}$, or $3 \pm \sqrt{7}$.

Containing Absolute Value

$$
\begin{array}{rlr}
|x-2|=5 & \\
x-2=-5 & \text { or } & x-2=5 \\
x=-3 & \text { or } & x=7
\end{array}
$$

The solutions are -3 and 7 .

Multiplying by the LCM

$$
\begin{aligned}
\frac{5}{4 x}+\frac{1}{x} & =2 \\
4 x \cdot\left(\frac{5}{4 x}+\frac{1}{x}\right) & =4 x \cdot 2 \\
5+4 & =8 x \\
9 & =8 x \\
\frac{9}{8} & =x
\end{aligned}
$$

The solution is $\frac{9}{8}$.

Using the Principle of Powers

$$
\begin{aligned}
\sqrt{x-1}-3 & =9 \\
\sqrt{x-1} & =12 \\
(\sqrt{x-1})^{2} & =12^{2} \\
x-1 & =144 \\
x & =145
\end{aligned}
$$

The solution is 145 .

Solving Systems of Equations Using the Elimination Method

$$
\begin{aligned}
x-3 y=-7 \longrightarrow-2 x+6 y & =14 \\
2 x+5 y=-3 \longrightarrow \begin{array}{l}
\longrightarrow \\
2 x+5 y
\end{array} & =-3 \\
\hline 11 y & =11 \\
y & =1
\end{aligned}
$$

Substitute 1 for y in either equation and solve for x :

$$
\begin{aligned}
2 x+5 \cdot 1 & =-3 \\
2 x & =-8 \\
x & =-4
\end{aligned}
$$

The solution is $(-4,1)$.

Solving Inequalities

Using the Addition Principle and the Multiplication Principle

$$
\begin{aligned}
-5 x+2 & \leq-78 \\
-5 x & \leq-80 \\
x & \geq 16
\end{aligned}
$$

The solution set is $\{x \mid x \geq 16\}$, or $[16, \infty)$.

Containing Absolute Value

$$
\begin{aligned}
& |x-2| \leq 5 \\
& -5 \leq x-2 \leq 5 \\
& -3 \leq x \leq 7
\end{aligned}
$$

The solution set is $\{x \mid-3 \leq x \leq 7\}$, or [-3, 7].

$$
\begin{array}{rlll}
|x-2| & >5 & \\
x-2<-5 & \text { or } & x-2>5 \\
x<-3 & \text { or } & x>7
\end{array}
$$

The solution set is $\{x \mid x<-3$ or $x>7\}$, or $(-\infty,-3) \cup(7, \infty)$.

Variation

Direct:
$y=k x ; y=6 x$

Inverse:

$y=\frac{k}{x} ; y=\frac{2}{x}$

Joint:

$y=k x z ; y=9 x z$

Complex Numbers

$$
i=\sqrt{-1} ; i^{2}=-1
$$

$$
(2-3 i)+(6+2 i)=8-i
$$

$$
\sqrt{-4} \cdot \sqrt{-15}=2 i \cdot \sqrt{15} i=2 \sqrt{15} i^{2}=-2 \sqrt{15}
$$

$$
\frac{-3+4 i}{1-6 i}=\frac{-3+4 i}{1-6 i} \cdot \frac{1+6 i}{1+6 i}=\frac{-27-14 i}{1-36 i^{2}}=-\frac{27}{37}-\frac{14}{37} i
$$

Properties of Logarithms

Product Rule: $\log _{a}(M \cdot N)=\log _{a} M+\log _{a} N$
Power Rule: $\log _{a} M^{k}=k \cdot \log _{a} M$
Quotient Rule: $\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$

CHAPTER

1.1 Introduction to Algebra
1.2 The Real Numbers
1.3 Addition of Real Numbers
1.4 Subtraction of Real Numbers

Mid-Chapter Review

1.5 Multiplication of Real Numbers
1.6 Division of Real Numbers
1.7 Properties of Real Numbers
1.8 Simplifying Expressions; Order of Operations

Summary and Review Test

Introduction to Real Numbers

 and Algebraic Expressions
STUDYING FOR SUCCESS Getting Off to a Good Start

Your syllabus for this course is extremely important. Read it carefully, noting required texts and materials.
If you have an online component in your course, register for it as soon as possible.
At the front of the text, you will find a Student Organizer card. This pullout card will help you keep track of important dates and useful contact information.

1.1
 Introduction to Algebra

OBJECTIVES

Evaluate algebraic expressions by substitution.

Translate phrases to algebraic expressions

SOURCE: 2010 U.S. Census

The study of algebra involves the use of equations to solve problems. Equations are constructed from algebraic expressions.

a EVALUATING ALGEBRAIC EXPRESSIONS

In arithmetic, you have worked with expressions such as

$$
49+75, \quad 8 \times 6.07, \quad 29-14, \quad \text { and } \quad \frac{5}{6}
$$

In algebra, we can use letters to represent numbers and work with algebraic expressions such as

$$
x+75, \quad 8 \times y, \quad 29-t, \quad \text { and } \quad \frac{a}{b} .
$$

Sometimes a letter can represent various numbers. In that case, we call the letter a variable. Let $a=$ your age. Then a is a variable since a changes from year to year. Sometimes a letter can stand for just one number. In that case, we call the letter a constant. Let $b=$ your date of birth. Then b is a constant.

Where do algebraic expressions occur? Most often we encounter them when we are solving applied problems. For example, consider the bar graph shown at left, one that we might find in a book or a magazine. Suppose we want to know how much greater the average population density per square mile is in New Jersey than in Illinois. Using arithmetic, we might simply subtract. But let's see how we can determine this using algebra. We translate the problem into a statement of equality, an equation. It could be done as follows:

Note that we have an algebraic expression, $231.1+x$, on the left of the equals sign. To find the number x, we can subtract 231.1 on both sides of the equation:

$$
\begin{aligned}
231.1+x & =1195.5 \\
231.1+x-231.1 & =1195.5-231.1 \\
x & =964.4
\end{aligned}
$$

This value of x gives the answer, 964.4 residents per square mile.

We call $231.1+x$ an algebraic expression and $231.1+x=1195.5$ an algebraic equation. Note that there is no equals sign, $=$, in an algebraic expression.

Do Margin Exercise 1.

An algebraic expression consists of variables, constants, numerals, operation signs, and/or grouping symbols. When we replace a variable with a number, we say that we are substituting for the variable. When we replace all of the variables in an expression with numbers and carry out the operations in the expression, we are evaluating the expression.

EXAMPLE 1 Evaluate $x+y$ when $x=37$ and $y=29$.
We substitute 37 for x and 29 for y and carry out the addition:

$$
x+y=37+29=66
$$

The number 66 is called the value of the expression when $x=37$ and $y=29$.

Algebraic expressions involving multiplication can be written in several ways. For example, " 8 times a " can be written as

$$
8 \times a, \quad 8 \cdot a, \quad 8(a), \quad \text { or simply } 8 a .
$$

Two letters written together without an operation symbol, such as $a b$, also indicate a multiplication.

EXAMPLE 2 Evaluate $3 y$ when $y=14$.

$$
3 y=3(14)=42
$$

Do Exercises 2-4.

EXAMPLE 3 Area of a Rectangle. The area A of a rectangle of length l and width w is given by the formula $A=l w$. Find the area when l is 24.5 in . and w is 16 in.

We substitute 24.5 in. for l and 16 in. for w and carry out the multiplication:

$$
\begin{aligned}
A=l w & =(24.5 \mathrm{in} .)(16 \mathrm{in} .) \\
& =(24.5)(16)(\mathrm{in} .)(\mathrm{in} .) \\
& =392 \mathrm{in}^{2}, \text { or } 392 \text { square inches. }
\end{aligned}
$$

Do Exercise 5.

Algebraic expressions involving division can also be written in several ways. For example, " 8 divided by t " can be written as

$$
8 \div t, \quad \frac{8}{t}, \quad 8 / t, \quad \text { or } 8 \cdot \frac{1}{t},
$$

where the fraction bar is a division symbol.

EXAMPLE 4 Evaluate $\frac{a}{b}$ when $a=63$ and $b=9$.
We substitute 63 for a and 9 for b and carry out the division:

$$
\frac{a}{b}=\frac{63}{9}=7
$$

1. Translate this problem to an equation. Then solve the equation.
Population Density. The average number of residents per square mile in six U.S. states is shown in the bar graph on the preceding page. How much greater is the population density in Connecticut than in Oregon?
2. Evaluate $a+b$ when $a=38$ and $b=26$.
3. Evaluate $x-y$ when $x=57$ and $y=29$.
4. Evaluate $4 t$ when $t=15$.
5. Find the area of a rectangle when l is 24 ft and w is 8 ft .

$$
\begin{aligned}
A= & l w \\
A= & (24 \mathrm{ft})(\quad) \\
& =(24)(\quad)(\mathrm{ft})(\mathrm{ft}) \\
& =192 \quad, \text { or } \\
& 192 \text { square feet }
\end{aligned}
$$

Answers

1. $39.9+x=738.1$; 698.2 residents per $\begin{array}{llll}\text { square mile } & \text { 2. } 64 & \text { 3. } 28 & \text { 4. } 60\end{array}$ 5. $192 \mathrm{ft}^{2}$

Guided Solution:
5. $8 \mathrm{ft}, 8, \mathrm{ft}^{2}$
6. Evaluate a / b when $a=200$ and $b=8$.
7. Evaluate $10 p / q$ when $p=40$ and $q=25$.
8. Commuting via Bicycle. Find the time it takes to bike 22 mi if the speed is 16 mph .

EXAMPLE 5 Evaluate $\frac{12 m}{n}$ when $m=8$ and $n=16$.

$$
\frac{12 m}{n}=\frac{12 \cdot 8}{16}=\frac{96}{16}=6
$$

Do Exercises 6 and 7.

EXAMPLE 6 Commuting Via Bicycle. Commuting to work via bicycle has increased in popularity with the emerging concept of sharing bicycles. Bikes are picked up and returned at docking stations. The payment is approximately $\$ 1.50$ per 30 min . Richard bicycles 18 mi to work. The time t, in hours, that it takes to bike 18 mi is given by

$$
t=\frac{18}{r}
$$

where r is the speed. Find the time for Richard to commute to work if his speed is 15 mph .

We substitute 15 for r and carry out the division:

$$
t=\frac{18}{r}=\frac{18}{15}=1.2 \mathrm{hr} .
$$

- Do Exercise 8.

b TRANSLATING TO ALGEBRAIC EXPRESSIONS

We translate problems to equations. The different parts of an equation are translations of word phrases to algebraic expressions. It is easier to translate if we know that certain words often translate to certain operation symbols.

Key Words, Phrases, and Concepts

ADDIIION $(+)$	SUBIRACTION (-)	MULTIPLICATION (\cdot)	DIVISION (\div)
add	subtract	multiply	divide
added to	subtracted from	multiplied by	divided by
sum	difference	product	quotient
total	minus	times	
plus	less than		
more than			
increased by	decreased by		
	take away		

EXAMPLE 7 Translate to an algebraic expression:
Twice (or two times) some number.
Think of some number, say, 8 . We can write 2 times 8 as 2×8, or $2 \cdot 8$. We multiplied by 2. Do the same thing using a variable. We can use any variable we wish, such as x, y, m, or n. Let's use y to represent some number. If we multiply by 2 , we get an expression

$$
y \times 2, \quad 2 \times y, \quad 2 \cdot y, \quad \text { or } \quad 2 y
$$

Answers

[^1]EXAMPLE 8 Translate to an algebraic expression:
Thirty-eight percent of some number.
Let $n=$ the number. The word "of" translates to a multiplication symbol, so we could write any of the following expressions as a translation:
$38 \% \cdot n, \quad 0.38 \times n$, or $0.38 n$.
EXAMPLE 9 Translate to an algebraic expression:
Seven less than some number.
We let x represent the number. If the number were 10 , then 7 less than 10 is $10-7$, or 3 . If we knew the number to be 34 , then 7 less than the number would be $34-7$. Thus if the number is x, then the translation is

$$
x-7
$$

EXAMPLE 10 Translate to an algebraic expression:
Eighteen more than a number.
We let $t=$ the number. If the number were 6 , then the translation would be $6+18$, or $18+6$. If we knew the number to be 17 , then the translation would be $17+18$, or $18+17$. Thus if the number is t, then the translation is

$$
t+18, \quad \text { or } \quad 18+t
$$

EXAMPLE 11 Translate to an algebraic expression:

A number divided by 5 .

We let $m=$ the number. If the number were 7 , then the translation would be $7 \div 5$, or $7 / 5$, or $\frac{7}{5}$. If the number were 21 , then the translation would be $21 \div 5$, or $21 / 5$, or $\frac{21}{5}$. If the number is m, then the translation is

$$
m \div 5, \quad m / 5, \quad \text { or } \quad \frac{m}{5}
$$

EXAMPLE 12 Translate each phrase to an algebraic expression.

PHRASE	ALGEBRAIC EXPREFSION
Five more than some number	$n+5$, or $5+n$
Half of a number	$\frac{1}{2} t, \frac{t}{2}$, or $t / 2$
Five more than three times some number	$3 p+5$, or $5+3 p$
The difference of two numbers	$x-y$
Six less than the product of two numbers	$m n-6$
Seventy-six percent of some number	$76 \% z$, or $0.76 z$
Four less than twice some number	$2 x-4$

Do Exercises 9-17.

Caution!

Note that $7-x$ is not a correct translation of the expression in Example 9. The expression $7-x$ is a translation of "seven minus some number" or "some number less than seven."

Translate each phrase to an algebraic expression.
9. Eight less than some number
10. Eight more than some number
11. Four less than some number
12. One-third of some number
13. Six more than eight times some number
14. The difference of two numbers
15. Fifty-nine percent of some number
16. Two hundred less than the product of two numbers
17. The sum of two numbers

Answers

Reading Check

Classify each expression as an algebraic expression involving either multiplication or division.
RC1. $3 / q$
RC2. $3 q$
RC3. $3 \cdot q$
RC4. $\frac{3}{q}$
a. Substitute to find values of the expressions in each of the following applied problems.

1. Commuting Time. It takes Abigail 24 min less time to commute to work than it does Jayden. Suppose that the variable x stands for the time it takes Jayden to get to work. Then $x-24$ stands for the time it takes Abigail to get to work. How long does it take Abigail to get to work if it takes Jayden 56 min ? 93 min ? 105 min ?
2. Distance Traveled. A driver who drives at a constant speed of r miles per hour for t hours will travel a distance of d miles given by $d=r t$ miles. How far will a driver travel at a speed of 65 mph for 4 hr ?
3. Wireless Internet Sign. The U.S. Department of Transportation has designed a new sign that indicates the availability of wireless internet. The square sign measures 24 in . on each side. Find its area.

Source: Manual of Uniform Traffic Control Devices, U.S. Department of Transportation, 2009

2. Enrollment Costs. At Mountain View Community College, it costs $\$ 600$ to enroll in the 8 A.m. section of Elementary Algebra. Suppose that the variable n stands for the number of students who enroll. Then $600 n$ stands for the total amount of tuition collected for this course. How much is collected if 34 students enroll? 78 students? 250 students?
4. Simple Interest. The simple interest I on a principal of P dollars at interest rate r for time t, in years, is given by $I=P r t$. Find the simple interest on a principal of $\$ 4800$ at 3% for 2 years.
6. Yield Sign. The U.S. Department of Transportation has designed a new yield sign. Each side of the triangular sign measures 30 in ., and the height of the triangle is 26 in . Find its area. The area of a triangle with base b and height h is given by $A=\frac{1}{2} b h$.

Source: Manual of Uniform Traffic Control Devices, U.S. Department of Transportation, 2009

7. Area of a Triangle. The area A of a triangle with base b and height h is given by $A=\frac{1}{2} b h$. Find the area when $b=45 \mathrm{~m}$ (meters) and $h=86 \mathrm{~m}$.

Evaluate.
9. $8 x$, when $x=7$
10. $6 y$, when $y=7$
11. $\frac{c}{d}$, when $c=24$ and $d=3$
12. $\frac{p}{q}$, when $p=16$ and $q=2$
13. $\frac{3 p}{q}$, when $p=2$ and $q=6$
14. $\frac{5 y}{z}$, when $y=15$ and $z=25$
15. $\frac{x+y}{5}$, when $x=10$ and $y=20$
16. $\frac{p+q}{2}$, when $p=2$ and $q=16$
17. $\frac{x-y}{8}$, when $x=20$ and $y=4$
18. $\frac{m-n}{5}$, when $m=16$ and $n=6$
8. Area of a Parallelogram. The area A of a parallelogram with base b and height h is given by $A=b h$. Find the area of the parallelogram when the height is 15.4 cm (centimeters) and the base is 6.5 cm .

b Translate each phrase to an algebraic expression. Use any letter for the variable(s) unless directed otherwise.
19. Seven more than some number
21. Twelve less than some number
23. b more than a
25. x divided by y
27. x plus w
29. m subtracted from n
31. Twice some number
33. Three multiplied by some number
35. Six more than four times some number
20. Some number increased by thirteen
22. Fourteen less than some number
24. c more than d
26. c divided by h
28. s added to t
30. p subtracted from q
32. Three times some number
34. The product of eight and some number
36. Two more than six times some number
37. Eight less than the product of two numbers
39. Five less than twice some number
41. Three times some number plus eleven
43. The sum of four times a number plus three times another number
38. The product of two numbers minus seven
40. Six less than seven times some number
42. Some number times 8 plus 5
44. Five times a number minus eight times another number
45. Your salary after a 5% salary increase if your salary before the increase was s
46. The price of a chain saw after a 30% reduction if the price before the reduction was P
47. Aubrey drove at a speed of 65 mph for t hours. How far did she travel? (See Exercise 3.)
48. Liam drove his pickup truck at 55 mph for t hours. How far did he travel? (See Exercise 3.)
49. Lisa had $\$ 50$ before spending x dollars on pizza. How much money remains?
50. Juan has d dollars before spending $\$ 820$ on four new tires for his truck. How much did Juan have after the purchase?
52. Meredith pays her babysitter $\$ 10$ per hour. What does it cost her to hire the sitter for m hours?

Synthesis

To the student and the instructor: The Synthesis exercises found at the end of most exercise sets challenge students to combine concepts or skills studied in that section or in preceding parts of the text.

Evaluate.
53. $\frac{a-2 b+c}{4 b-a}$, when $a=20, b=10$, and $c=5$
54. $\frac{x}{y}-\frac{5}{x}+\frac{2}{y}$, when $x=30$ and $y=6$
55. $\frac{12-c}{c+12 b}$, when $b=1$ and $c=12$
56. $\frac{2 w-3 z}{7 y}$, when $w=5, y=6$, and $z=1$

The Real Numbers

A set is a collection of objects. For our purposes, we will most often be considering sets of numbers. One way to name a set uses what is called roster notation. For example, roster notation for the set containing the numbers 0,2 , and 5 is $\{0,2,5\}$.

Sets that are part of other sets are called subsets. In this section, we become acquainted with the set of real numbers and its various subsets.

Two important subsets of the real numbers are listed below using roster notation.

NATURAL NUMBERS

The set of natural numbers $=\{1,2,3, \ldots\}$. These are the numbers used for counting.

WHOLE NUMBERS

The set of whole numbers $=\{0,1,2,3, \ldots\}$. This is the set of natural numbers and 0 .

We can represent these sets on the number line. The natural numbers are to the right of zero. The whole numbers are the natural numbers and zero.

We create a new set, called the integers, by starting with the whole numbers, $0,1,2,3$, and so on. For each natural number $1,2,3$, and so on, we obtain a new number to the left of zero on the number line:

For the number 1, there will be an opposite number -1
(negative 1).
For the number 2, there will be an opposite number -2
(negative 2).
For the number 3, there will be an opposite number -3
(negative 3), and so on.
The integers consist of the whole numbers and these new numbers.

INTEGERS

The set of integers $=\{\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots\}$.

OBJECTIVES

a State the integer that corresponds to a real-world situation.
b Graph rational numbers on the number line.

C Convert from fraction notation for a rational number to decimal notation.
d Determine which of two real numbers is greater and indicate which, using $<$ or $>$. Given an inequality like $a>b$, write another inequality with the same meaning. Determine whether an inequality like $-3 \leq 5$ is true or false.
e Find the absolute value of a real number.

We picture the integers on the number line as follows.

We call the integers to the left of zero negative integers. The natural numbers are also called positive integers. Zero is neither positive nor negative. We call -1 and 1 opposites of each other. Similarly, -2 and 2 are opposites, -3 and 3 are opposites, -100 and 100 are opposites, and 0 is its own opposite. Pairs of opposite numbers like -3 and 3 are the same distance from zero. The integers extend infinitely on the number line to the left and right of zero.

a INTEGERS AND THE REAL WORLD

Integers correspond to many real-world problems and situations. The following examples will help you get ready to translate problem situations that involve integers to mathematical language.

EXAMPLE 1 Tell which integer corresponds to this situation: The temperature is 4 degrees below zero.

The integer -4 corresponds to the situation. The temperature is -4°.
EXAMPLE 2 Water Level. Tell which integer corresponds to this situation: As the water level of the Mississippi River fell during the drought of 2012, barge traffic was restricted, causing a severe decline in shipping volumes. On August 24, the river level at Greenville, Mississippi, was 10 ft below normal.
Source: Rick Jervis, USA TODAY, August 24, 2012
The integer -10 corresponds to the drop in water level.

EXAMPLE 3 Stock Price Change. Tell which integers correspond to this situation: Hal owns a stock whose price decreased $\$ 16$ per share over a recent period. He owns another stock whose price increased $\$ 2$ per share over the same period.

The integer -16 corresponds to the decrease in the value of the first stock. The integer 2 represents the increase in the value of the second stock.

Do Exercises 1-5.

b THE RATIONAL NUMBERS

We created the set of integers by obtaining a negative number for each natural number and also including 0 . To create a larger number system, called the set of rational numbers, we consider quotients of integers with nonzero divisors. The following are some examples of rational numbers:

$$
\frac{2}{3}, \quad-\frac{2}{3}, \quad \frac{7}{1}, \quad 4, \quad-3, \quad 0, \quad \frac{23}{-8}, \quad 2.4, \quad-0.17, \quad 10 \frac{1}{2}
$$

The number $-\frac{2}{3}$ (read "negative two-thirds") can also be named $\frac{-2}{3}$ or $\frac{2}{-3}$; that is,

$$
-\frac{a}{b}=\frac{-a}{b}=\frac{a}{-b}
$$

The number 2.4 can be named $\frac{24}{10}$ or $\frac{12}{5}$, and -0.17 can be named $-\frac{17}{100}$. We can describe the set of rational numbers as follows.

RATIONAL NUMBERS

The set of rational numbers $=$ the set of numbers $\frac{a}{b}$, where a and b are integers and b is not equal to $0(b \neq 0)$.

Note that this new set of numbers, the rational numbers, contains the whole numbers, the integers, the arithmetic numbers (also called the nonnegative rational numbers), and the negative rational numbers.

We picture the rational numbers on the number line as follows.

To graph a number means to find and mark its point on the number line. Some rational numbers are graphed in the preceding figure.

Tell which integers correspond to each situation.

1. Temperature High and Low. The highest recorded temperature in Illinois is 117° F on July 14,1954 , in East St. Louis. The lowest recorded temperature in Illinois is $36^{\circ} \mathrm{F}$ below zero on January 5, 1999, in Congerville.
Source: National Climate Data Center, NESDIS, NOAA, U.S. Department of Commerce (through 2010)
2. Stock Decrease. The price of a stock decreased $\$ 3$ per share over a recent period.
3. At 10 sec before liftoff, ignition occurs. At 148 sec after liftoff, the first stage is detached from the rocket.
4. The halfback gained 8 yd on first down. The quarterback was sacked for a 5-yd loss on second down.
5. A submarine dove 120 ft , rose 50 ft , and then dove 80 ft .

Answers

| 1. $117 ;-36$ | 2. -3 | 3. $-10 ; 148$ |
| :--- | :--- | :--- | :--- |
| 4. $8 ;-5$ | 5. $-120 ; 50 ;-80$ | |

Graph each number on the number line.
6. $-\frac{7}{2}$

7. 1.4

$$
\stackrel{\mid}{\mid} \left\lvert\, \begin{array}{cccccccccccc}
\mid & \mid \\
-6-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}\right.
$$

8. $-\frac{11}{4}$

Answers

EXAMPLES Graph each number on the number line.
4. $-3.2 \quad$ The graph of -3.2 is $\frac{2}{10}$ of the way from -3 to -4 .

5. $\frac{13}{8}$

The number $\frac{13}{8}$ can also be named $1 \frac{5}{8}$, or 1.625 . The graph is $\frac{5}{8}$ of the way from 1 to 2 .

Do Exercises 6-8.

c NOTATION FOR RATIONAL NUMBERS

Each rational number can be named using fraction notation or decimal notation.

EXAMPLE 6 Convert to decimal notation: $-\frac{5}{8}$.
We first find decimal notation for $\frac{5}{8}$. Since $\frac{5}{8}$ means $5 \div 8$, we divide.
0.625

$\frac{48}{2} 000$
$\frac{16}{4} 0$
40
0

Thus, $\frac{5}{8}=0.625$, so $-\frac{5}{8}=-0.625$.
Decimal notation for $-\frac{5}{8}$ is -0.625 . We consider -0.625 to be a terminating decimal. Decimal notation for some numbers repeats.

EXAMPLE 7 Convert to decimal notation: $\frac{7}{11}$.

We can abbreviate repeating decimal notation by writing a bar over the repeating part-in this case, we write $0 . \overline{63}$. Thus, $\frac{7}{11}=0 . \overline{63}$.

Each rational number can be expressed in either terminating decimal notation or repeating decimal notation.

The following are other examples showing how rational numbers can be named using fraction notation or decimal notation:

$$
0=\frac{0}{8}, \quad \frac{27}{100}=0.27, \quad-8 \frac{3}{4}=-8.75, \quad-\frac{13}{6}=-2.1 \overline{6} .
$$

Do Exercises 9-11.

d THE REAL NUMBERS AND ORDER

Every rational number has a point on the number line. However, there are some points on the line for which there is no rational number. These points correspond to what are called irrational numbers.

What kinds of numbers are irrational? One example is the number π, which is used in finding the area and the circumference of a circle: $A=\pi r^{2}$ and $C=2 \pi r$.

Another example of an irrational number is the square root of 2 , named $\sqrt{2}$. It is the length of the diagonal of a square with sides of length 1 . It is also the number that when multiplied by itself gives $2-$ that is, $\sqrt{2} \cdot \sqrt{2}=2$. There is no rational number that can be multiplied by itself to get 2 . But the
 following are rational approximations:
1.4 is an approximation of $\sqrt{2}$ because $(1.4)^{2}=1.96$;
1.41 is a better approximation because $(1.41)^{2}=1.9881$;
1.4142 is an even better approximation because $(1.4142)^{2}=1.99996164$.

We can find rational approximations for square roots using a calculator.

Decimal notation for rational numbers either terminates or repeats.
Decimal notation for irrational numbers neither terminates nor repeats.

Some other examples of irrational numbers are $\sqrt{3},-\sqrt{8}, \sqrt{11}$, and $0.121221222122221 . \ldots$. Whenever we take the square root of a number that is not a perfect square, we will get an irrational number.

The rational numbers and the irrational numbers together correspond to all the points on the number line and make up what is called the real-number system.

Find decimal notation.
9. $-\frac{3}{8}$
10. $-\frac{6}{11}$
11. $\frac{4}{3}$

CALCULATOR CORNER

Approximating

Square Roots and $\pi \quad$ Square roots are found by pressing ${ }^{\text {2ND }}$ $\sqrt{ } \sqrt{ }(\sqrt{ }$ is the second operation associated with the \boldsymbol{x}^{2} key.)

To find an approximation for $\sqrt{48}$, we press 2ND (V) (4) 8 ENTER

The number $\boldsymbol{\pi}$ is used widely enough to have its own key. ($\boldsymbol{\pi}$ is the second operation associated with the $\boldsymbol{\sim}$ key.) To approximate π, we press $\operatorname{\text {2ND}} \pi$ ENTER.

EXERCISES: Approximate.

1. $\sqrt{76}$
2. $\sqrt{317}$
3. $15 \cdot \sqrt{20}$
4. $29+\sqrt{42}$
5. π
6. $29 \cdot \pi$
7. $\pi \cdot 13^{2}$
8. $5 \cdot \pi+8 \cdot \sqrt{237}$

Answers

9. -0.375	10. $-0 . \overline{54}$	11. $1 . \overline{3}$

REAL NUMBERS

The real numbers consist of the rational numbers and the irrational numbers. The following figure shows the relationships among various kinds of numbers.

Order

Real numbers are named in order on the number line, increasing as we move from left to right. For any two numbers on the line, the one on the left is less than the one on the right.

We use the symbol $<$ to mean "is less than." The sentence $-8<6$ means " -8 is less than 6 ." The symbol $>$ means "is greater than." The sentence $-3>-7$ means " -3 is greater than -7 ." The sentences $-8<6$ and $-3>-7$ are inequalities.

EXAMPLES Use either $<$ or $>$ for \square to write a true sentence.
8. $2 \square 9$
9. $-7 \square 3$
10. $6 \square-12$
11. $-18 \square-5$ Since 2 is to the left of 9,2 is less than 9 , so $2<9$.
8. $-\frac{19}{25}$

CALCULATOR CORNER

Negative Numbers on a Calculator; Converting to Decimal Notation We use the opposite key $(-)$ to enter negative numbers on a graphing calculator. Note that this is different from the subtraction key, - .

To convert $-\frac{5}{8}$ to decimal notation, we press $(1-5) \doteqdot$
enter. The result is -0.625 .

$-5 / 8$

EXERCISES: Convert to decimal notation.

1. $-\frac{3}{4}$
2. $-\frac{9}{20}$
3. $-\frac{1}{8}$
4. $-\frac{9}{5}$
5. $-\frac{27}{40}$
6. $-\frac{11}{16}$
7. $-\frac{7}{2}$

The set of real numbers $=$ The set of all numbers corresponding to
$\begin{aligned} & \text { The set of real numbers }= \text { The set of all numbers corresponding to } \\ & \text { points on the number line } .\end{aligned}$

12. $-2.7 \square-\frac{3}{2}$

Since -7 is to the left of 3 , we have $-7<3$.
Since 6 is to the right of -12 , then $6>-12$.
Since -18 is to the left of -5 , we have $-18<-5$.
The answer is $-2.7<-\frac{3}{2}$.

13. $1.5 \square-2.7$

The answer is $1.5>-2.7$.
14. $1.38 \square 1.83$

The answer is $1.38<1.83$.
15. -3.451.32

The answer is $-3.45<1.32$.
16. -40
17. $5.8 \square 0$
18. $\frac{5}{8}$ \qquad
19. $-\frac{1}{2} \square-\frac{1}{3}$
\qquad

20. $-2 \frac{3}{5} \square-\frac{11}{4} \quad$ The answer is $-2 \frac{3}{5}>-\frac{11}{4}$.

Do Exercises 12-19.

Note that both $-8<6$ and $6>-8$ are true. Every true inequality yields another true inequality when we interchange the numbers or the variables and reverse the direction of the inequality sign.

ORDER; >, <

$a<b$ also has the meaning $b>a$.

EXAMPLES Write another inequality with the same meaning.
21. $-3>-8 \quad$ The inequality $-8<-3$ has the same meaning. 22. $a<-5 \quad$ The inequality $-5>a$ has the same meaning.

A helpful mental device is to think of an inequality sign as an "arrow" with the arrowhead pointing to the smaller number.

Do Exercises 20 and 21.
Note that all positive real numbers are greater than zero and all negative real numbers are less than zero.

If b is a positive real number, then $b>0$.
If a is a negative real number, then $a<0$.

Use either $<$ or $>$ forto write a true sentence.
12. -37
13. $-8 \square-5$
14. $7 \square-10$
15. $3.1 \square-9.5$
16. -4.78 -5.01
17. $-\frac{2}{3} \square-\frac{5}{9}$
18. $-\frac{11}{8} \square \frac{23}{15}$
19. 0 \square -9.9

Write another inequality with the same meaning.
20. $-5<7$
21. $x>4$

Answers

$12 .<13 .<14 .>15 .>16 .>$
$17 .<18 .<19 .>$
21. $4<x$

Write true or false for each statement.
22. $-4 \leq-6$
23. $7.8 \geq 7.8$
24. $-2 \leq \frac{3}{8}$

CALCULATOR CORNER

Absolute Value Finding
absolute value is the first item in the Catalog on the T1-84 Plus graphing calculator. To find $|-7|$, we first press 2ND ©atalog ENTER to copy "abs(" to the home screen. (CATALOG is the second operation associated with the 0 numeric key.) Then we press $(1-\square)$ ENTER. The result is 7 .

To find $\left|-\frac{1}{2}\right|$ and express the result as a fraction, we press 2ND

MATH (1) ENTER. The result is $\frac{1}{2}$.

EXERCISES: Find the absolute value.

1. $|-5|$
2. $|17|$
3. $|0|$
4. $|6.48|$
5. $|-12.7|$
6. $|-0.9|$
7. $\left|-\frac{5}{7}\right|$
8. $\left|\frac{4}{3}\right|$

Find the absolute value.
25. $|8|$
26. $|-9|$
27. $\left|-\frac{2}{3}\right|$
28. $|5.6|$

Answers

22. False 23. True 24. True 25. 8
23. $9 \quad$ 27. $\frac{2}{3} \quad$ 28. 5.6

Expressions like $a \leq b$ and $b \geq a$ are also inequalities. We read $\boldsymbol{a} \leq \boldsymbol{b}$ as " \boldsymbol{a} is less than or equal to \boldsymbol{b}." We read $\boldsymbol{a} \geq \boldsymbol{b}$ as " \boldsymbol{a} is greater than or equal to b."

EXAMPLES Write true or false for each statement.
23. $-3 \leq 5.4$ True since $-3<5.4$ is true
24. $-3 \leq-3 \quad$ True since $-3=-3$ is true
25. $-5 \geq 1 \frac{2}{3} \quad$ False since neither $-5>1 \frac{2}{3}$ nor $-5=1 \frac{2}{3}$ is true

Do Exercises 22-24.

e ABSOLUTE VALUE

From the number line, we see that numbers like 4 and -4 are the same distance from zero. Distance is always a nonnegative number. We call the distance of a number from zero on the number line the absolute value of the number.

ABSOLUTE VALUE

The absolute value of a number is its distance from zero on the number line. We use the symbol $|x|$ to represent the absolute value of a number x.

FINDING ABSOLUTE VALUE

a) If a number is negative, its absolute value is its opposite.
b) If a number is positive or zero, its absolute value is the same as the number.

EXAMPLES Find the absolute value.
26. $|-7| \quad$ The distance of -7 from 0 is 7 , so $|-7|=7$.
27. $|12| \quad$ The distance of 12 from 0 is 12 , so $|12|=12$.
28. $|0| \quad$ The distance of 0 from 0 is 0 , so $|0|=0$.
29. $\left|\frac{3}{2}\right|=\frac{3}{2}$
30. $|-2.73|=2.73$

Do Exercises 25-28.

Reading Check

Use the number line below for Exercises RC1-RC10.

Match each number with its graph.
RC1. $-2 \frac{5}{7}$
RC2. $\left|\frac{0}{-8}\right|$
RC3. -2.25
RC4. $\frac{17}{3}$
RC5. $|-4|$
RC6. $3 . \overline{4}$

Write true or false. The letters name numbers on the number line shown above.
RC7. $K<B$
RC8. $H<B$
RC9. $E<C$
RC10. $J>D$
a. State the integers that correspond to each situation.

1. On Wednesday, the temperature was 24° above zero. On Thursday, it was 2° below zero.
2. Temperature Extremes. The highest temperature ever created in a lab is $7,200,000,000,000^{\circ} \mathrm{F}$. The lowest temperature ever created is approximately $460^{\circ} \mathrm{F}$ below zero.

Sources: Live Science; Guinness Book of World Records
5. Empire State Building. The Empire State Building has a total height, including the lightning rod at the top, of 1454 ft . The foundation depth is 55 ft below ground level.

Source: www.empirestatebuildingfacts.com

2. A student deposited her tax refund of $\$ 750$ in a savings account. Two weeks later, she withdrew $\$ 125$ to pay technology fees.
4. Extreme Climate. Verkhoyansk, a river port in northeast Siberia, has the most extreme climate on the planet. Its average monthly winter temperature is $58.5^{\circ} \mathrm{F}$ below zero, and its average monthly summer temperature is $56.5^{\circ} \mathrm{F}$.
Source: Guinness Book of World Records
6. Shipwreck. There are numerous shipwrecks to explore near Bermuda. One of the most frequently visited sites is L'Herminie, a French warship that sank in 1838. This ship is 35 ft below the surface.
Source: www./10best.com/interests/adventure/ scuba-diving-in-pirate-territory/
b Graph the number on the number line.
7. $\frac{10}{3}<\underset{-6-5-4-3-2-1}{|+|} \left\lvert\, \begin{array}{llllllllll}\mid & \mid \\ \leftarrow\end{array}\right.$
9. -5.2

C Convert to decimal notation.
13. $-\frac{7}{8}$
14. $-\frac{3}{16}$
15. $\frac{5}{6}$
16. $\frac{5}{3}$
17. $-\frac{7}{6}$
18. $-\frac{5}{12}$
19. $\frac{2}{3}$
20. $-\frac{11}{9}$
21. $\frac{1}{10}$
22. $\frac{1}{4}$
23. $-\frac{1}{2}$
24. $\frac{9}{8}$
25. $\frac{4}{25}$
26. $-\frac{7}{20}$
10. 4.78

12. $2 \frac{6}{11} \ll \underset{-6-5-4-3-2-1}{4}$ 0
d. Use either $<$ or $>$ for \qquad to write a true sentence.
27. 8
28. $3 \square 0$
29. -830. $6 \square-6$
31. -8 \qquad 8
32. 0-9
33. -834. -4-3
35. -5
36. -3$-4$1.24
38. -3.3 -2.2

[^0]: ** Also available for download from the Instructor Resource Center (IRC) on www.pearsonglobaleditions.com/Bittinger.

[^1]: 6. $25 \quad$ 7. $16 \quad$ 8. 1.375 hr
